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In this paper we show a new method for calculating the nucleolus by solving a unique minimization
linear programwith Oð4nÞ constraints whose coefficients belong to f−1;0;1g. We discuss the need of having
all these constraints and empirically prove that they can be reduced to Oðkmax2

nÞ, where kmax is a positive
integer comparable with the number of players. A computational experience shows the applicability of our
method over (pseudo)random transferable utility cooperative games with up to 18 players.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

This paper presents new advances on computing the nucleo-
lus of a cooperative game with side payments as defined by
Schmeidler [19]. Kohlberg [7] proved that the nucleolus can be
found by solving a unique linear program of extremely large size
with Oð2n!Þ constraints. Owen [14] showed how this program can
be reduced to a more tractable size of Oð4nÞ constraints, although
the constraint coefficients are very large. On the other hand,
Maschler et al. [11] gave another method for finding the nucleo-
lus by giving a constructive definition of the lexicographic center
of a cooperative game and showing the equivalence between this
concept and the nucleolus. In their approach they have to solve a
sequence of Oð4nÞ minimization linear programs with constraint
coefficients in f−1;0;1g. This approach was improved by Sankaran
[18] who gave a method for computing the nucleolus solving a
sequence of only Oð2nÞ minimization linear programs with con-
straint coefficients in f−1;0;1g. Hallefjord et al. [6] considered
games whose characteristic function is given from mathematical
programming problems, and calculated the nucleolus of such
games. For this aim, only those coalitions whose characteristic
function is required for calculating the nucleolus are considered.
Later Potters et al. [17] described a fast algorithm to find the
nucleolus of any game with non-empty imputation set. This
algorithm is based on solving a prolonged simplex algorithm. It
requires solving n−1 linear programs with at most 2n þ n−1 rows
and 2n−1 columns. Since then, one can find some improvements
on the computation of the nucleolus in particular classes of
ll rights reserved.

ea@gmail.com,
games, but not much has been done on the general case. In this
regard, it is worth underlying the paper by Leng and Parlar [10],
which develops an algebraic method for finding the nucleolus of
any 3-player game with non-empty core. This method is based on
a division of different cases depending on the values of the
characteristic function.

Despite its computational complexity, the nucleolus has proven
very effective in real cost allocation problems. One of the most
well-known applications of the nucleolus are the bankruptcy
problems, where it was proven by Aumann and Maschler to
coincide with the talmudic rule, see [1]. More recent applications
are, for instance: Lemaire [9] applies (among other allocation
rules) the nucleolus for allocating costs in insurance companies;
Songhuai et al. [20] apply the nucleolus for power losses allocation
in electrical markets, which is accepted as it satisfies open, equal,
and impartial principles; Le Breton et al. [8] use the nucleolus and
the Shapley value for the production and finance of public projects.

In this paper, we show an alternative method for computing
the nucleolus of an n-person cooperative game by solving one
unique minimization linear program with Oð4nÞ constraints whose
coefficients are in f−1;0;1g. Although the complexity of the new
problem is similar to Owen's one (see [14]), the advantage of the
new proposal is that all constraint coefficients are in f−1;0;1g,
whereas in Owen's formulation some coefficients are extremely
large. Besides, we propose a solution method that avoids the
problem of having too small constants and significantly reduces
the number of constraints. Thus, our formulation gives a compu-
tationally more stable method. This special form of the program
has proven to be specially suitable for other optimization pro-
blems, like the convex order median location problem (see the
book by Nickel and Puerto [12]). Recent applications of such
problems can be found in Blanco et al. [3] and Espejo et al. [4].
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The rest of the paper is structured as follows. Section 2 gives
some needed preliminary concepts. In Section 3 we formulate the
nucleolus as the solution to a unique LP problem whose resolution
is discussed in Section 4. Section 5 illustrates our procedure, which
is tested via some experiments in Section 6.
2. Background

Cooperative game theory studies decision processes that
involve several agents (players) which are allowed to cooperate.
This branch of applied mathematics is attracting more and more
attention to the scientific community. A proof of that are the 10
Nobel prize laureates in Economic Sciences related with game
theory (the last two in 2012).

Given the set of players N¼ f1;…;ng, a coalition of N is any
subset S⊂N. The set of all possible coalitions of N shall be denoted
by 2N . We define the characteristic function as the map

v : 2N⟶R

S⟶vðSÞ; ð1Þ

where v(S) represents the maximum profit that the coalition S can
make by acting on its own, without taking into account what the
other players in N\S can do. So, v(N) is the best payoff that the
coalition formed by all players can obtain. This coalition, N, is
called the grand coalition. We set vð∅Þ ¼ 0.

Therefore, a cooperative game can be represented by Γ ¼ ðN; vÞ
where N is its set of players f1;2;…;ng and v is its characteristic
function.

One problem faced by cooperative game theory is that of
allocating the benefit obtained by the grand coalition among
the players. One such allocation is the nucleolus, introduced by
Schmeidler in [19]. For the definition of the nucleolus, the concept
of excess vector is needed. The vector of excesses of an allocation
x∈Rn is the vector θðxÞ∈R2n−1 defined as

θðxÞ ¼ ðeðS; xÞÞ with eðS; xÞ ¼ vðSÞ−∑
i∈S

xi; ∀S⊂N; S≠∅: ð2Þ

The nucleolus is the unique vector that lexicographically mini-
mizes the non-increasing sorted vector of excesses.

Allocations x such that eðS; xÞ ¼ 0 if S¼N and eðS; xÞ≤0 for any
other coalition S, are known as core allocations. If the core of a
game is non-empty, its nucleolus is a core allocation. Although
core allocations have been widely used in the literature for the
fairness conditions they satisfy (all coalitions receive at least
the value of their characteristic function), there are some recent
papers that discuss about some drawbacks of core allocations and
go beyond this set (e.g., see Perea et al. [16] or Audy et al. [2].)

In what follows we restrict ourselves to the nucleolus of a
cooperative game defined on the set of pre-imputations, namely
the set

I ¼ x∈RN : ∑
n

i ¼ 1
xi ¼ vðNÞ

( )
: ð3Þ

Note that eðN; xÞ ¼ eð∅; xÞ ¼ 0 for all x∈I, and we therefore consider
only 2n−2 coalitions (all S∈2N−f∅;Ng). Needless to say that the
results obtained in this paper clearly extend to any polytope.

The following 3-player example illustrates these concepts.

Example 2.1. Consider the following characteristic function:

vðfigÞ ¼ vðf1;3gÞ ¼ 0; vðf1;2gÞ ¼ 3; vðf2;3gÞ ¼ 1; vðNÞ ¼ 4;

and the following two pre-imputations:

x¼ ð2:5;1;0:5Þ; y¼ ð1:5;2;0:5Þ:
Their excess vectors (sorted in a non-increasing way) are

θðxÞ ¼ ð−0:5;−0:5;−0:5;−1;−2:5;−3Þ:

θðyÞ ¼ ð−0:5;−0:5;−1:5;−1:5;−2;−2Þ:
Therefore, θðyÞoLθðxÞ (where o L means lexicographically smaller).
Actually, it can be proven that y is the nucleolus of this game.

For the sake of readability, we embed the problem in R2n−2�
Rn, a space of large dimension where the first 2n−2 coordinates
correspond to the excesses (where we assume an ordering on the
subsets of N which is arbitrary but fixed) and the remaining n to
players' allocations. In this space, we deal with the polytope

P ¼ ðθ; xÞ∈R2n−2 � Rn : θS≥vðSÞ−∑
i∈S

xi; S⊂N and ∑
n

i ¼ 1
xi ¼ vðNÞ

( )
:

This way we shall simultaneously identify the nucleolus (xn) and
its excesses (θn).

Let ðθð1Þ;…; θð2n−2ÞÞ be the vector obtained by sorting θ in non-
increasing order, i.e., θð1Þ≥θð2Þ≥⋯≥θð2n−2Þ. In [13] it is proved that,
if λ1;…; λ2n−1 are constants sorted in non-decreasing order with
λ2n−1 ¼ 0, then ∑2n−2

i ¼ 1 λiθðiÞ can be represented as the solution value
of the following linear programming problem:

min ∑
2n−2

k ¼ 1
ðλk−λkþ1Þ ktk þ ∑

2n−2

i ¼ 1
di;k

 !

s:t: di;k≥θi−tk; ∀i; k¼ 1;…;2n−2;
di;k≥0: ð4Þ

In the following section we will prove that, for a convenient choice
of the constants λ, a modification of problem (4) gives the nucleolus
of any cooperative game.
3. The main result
Theorem 3.1. Given a cooperative TU-game (N,v), its nucleolus is the
unique solution to the following minimization linear program with
Oð4nÞ variables and constraints whose coefficients are in f−1;0;1g:

min ∑
2n−2

k ¼ 1
ðλk−λkþ1Þ ktk þ ∑

2n−2

i ¼ 1
dik

 !

s:t: dik≥θi−tk; ∀i; k;
dik≥0; ∀i; k
ðθ; xÞ∈P; ð5Þ

with λk ¼ δk−1; k¼ 1;…;2n−2; λ2n−1 ¼ 0 and a convenient choice
of δ.

Proof. The nucleolus ðθn; xnÞ corresponds to the lexicographical
minimization of the non-increasingly sorted vectors of excesses.
Therefore, there exists a permutation sðθnÞ, of ð1;…;2n−2Þ, that
sorts the elements of the θ-variables such that ðθn; xnÞ is the
lexicographical minimumwith respect to the θ-variables (excesses).
First of all, it is a folklore result that on compact domains

lexicographical minimization is equivalent to linear programming.
This can be traced back (at least for finite sets) in [5, p. 70] and one
explicit proof can be found in the CEnter Discussion Paper No.
20006-89 by S. Tijs. In any case and for the sake of completeness,
we prove that after sorting the θ-variables according with the
permutation sðθnÞ, the nucleolus ðθn; xnÞ is the unique minimum
of the linear function ð1; δ; δ2;…; δ2

n−3;0;…n ;0Þðθ; xÞt on PsðθnÞ, the
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polytope that results from P after reordering the first 2n−2
coordinates according with the permutation sðθnÞ, for some δo1.
Take z∈extðPsðθnÞÞ−fðθn; xnÞg, where ext(Q) denotes the set of

extreme points of the set Q. Denote by z≥ ¼ ðzð1Þ;…; zð2n−2Þ; xÞ the
vector obtained from z after sorting its 2n−2 first components in
non-increasing order. Due to the uniqueness of the nucleolus, we
know that there exists r∈f1;2;…;2n−2g such that θnk ¼ zðkÞ for kor
and θnr ozðrÞ. Thus, for any δ40 we have that

ð1; δ; δ2;…; δ2
n−3;0;…n ;0Þ½z≥−ðθn; xnÞt �

¼ δr−1ðzðrÞ−θnr Þ þ ∑
2n−2

k ¼ rþ1
δk−1ðzk−θnkÞ

¼ δr−1½ðzðrÞ−θnr Þ þ ∑
2n−2

k ¼ rþ1
δk−rðzk−θnkÞ�

¼ δr−1KðδÞ: ð6Þ

Note that limδ-0KðδÞ ¼ ðzðrÞ−θnr Þ40. Therefore, there exists δn so
that KðδÞ40 ∀δoδn. Hence, the scalar product in (6) is positive, at
least, for any δoδn.
Hence, for all δoδn one has that

ð1; δ; δ2;…; δ2
n−3;0;…n ;0Þ½z≥−ðθn; xnÞt �40

∀z∈extðPsðθnÞÞ\fðθn; xnÞg: ð7Þ

However, for z¼ ðθn; xnÞt , it attains the null value. Thus

ðθn; xnÞ ¼ arg minfð1; δ; δ2;…; δ2
n−3;0;…n ;0Þðθ; xÞt : ðθ; xÞ∈extðPsðθnÞÞg

∀δoδn: ð8Þ

Thus, once the permutation that gives the lexicographic order-
ing in the optimum is known, finding the nucleolus reduces to
solving a linear program. Nevertheless, in order to apply the above
argument we need to prove that the problem that gives the lex-
minimum, namely

min ∑
2n−2

i ¼ 1
δi−1θðiÞ

s:t: θð1Þ≥θð2Þ≥⋯≥θð2n−3Þ
ðθ; xÞ∈P ð9Þ

can be written as a linear programming problem. This formulation
is doable using the result in [13], see problem (4). Consider linear
programming problem (5). The objective function and the first
group of constraints represent the ordered weighted sum of
the values ∑2n−2

k ¼ 1λ
kθðkÞ, where θð1Þ≥θð2Þ≥⋯≥θð2n−2Þ. Notice that this

formulation results from the reformulation of the ordered median
problem that appears in [13, Section 3] (see also [12]). It is clearly
applicable here because we consider the convex case of the
weighted ordered average, i.e., δ0≥δ1≥⋯≥δ2

n−3≥0: This formulation,
together with the fact that for the permutation sðθnÞ, ðθn; xnÞ is the
unique minimum of ð1; δ; δ2;…; δ2

n−3;0…n 0Þðθ; xÞt on PsðθnÞ, proves
that computing the nucleolus of an n-person cooperative game
is equivalent to solving the continuous linear program (5), which
has Oð4nÞ variables, Oð4nÞ constraints with coefficients in f−1;0;1g.
The uniqueness in the solution to (5) comes from the fact that,

on compact and convex domains, the nucleolus is unique (see for
instance [19] or [7]). Because we are dealing with allocations in
the compact and convex set I, see (3), this uniqueness result
follows. &
The reader may have noted that a key aspect in the previous
proof is the calculus of δn. The following lemma gives an explicit
estimate of an upper bound for such a constant.

Lemma 3.1. Let se that β¼minfðzðrÞ−z′ðrÞÞ : z; z′∈extðPÞ; r∈f1;…;

2n−2g so that zðkÞ ¼ z′ðkÞ ∀kor; zðrÞ4z′ðrÞg; and let δn ¼ β=ð2vðNÞþ βÞ.
Then, for all δoδn we have that KðδÞ40.

Proof. Let θn be the excesses produced by the nucleolus xn sorted
in a non-increasing way. Take z∈extðPÞ\fθn; xng in the conditions of
the lemma, and let r∈f1;2;…;2n−2g be such that θnk ¼ zðkÞ for kor
and θnr ozðrÞ. It is clear that ðzðrÞ−θnr Þ≥β. Thus, if δoδn, we also have
that δo ðzðrÞ−θnr Þ=ð2vðNÞ þ ðzðrÞ−θnr ÞÞ, because function f ðyÞ ¼ y=ðaþ
yÞ is monotone increasing for all y≠a if a40. Therefore the
following inequalities hold:

δo ðzðrÞ−θnr Þ=2vðNÞ
1þ ðzðrÞ−θnr Þ=2vðNÞ

⇒δþ δ
ðzðrÞ−θnr Þ
2vðNÞ o ðzðrÞ−θnr Þ

2vðNÞ ;

which implies that

δ

1−δ
o ðzðrÞ−θnr Þ

2vðNÞ :

Since δoδno1, the last inequality implies

∑
∞

k ¼ 2
δk−1o ðzðrÞ−θnr Þ

2vðNÞ ⇒ ∑
2n−2

k ¼ rþ1
δk−1o ðzðrÞ−θnr Þ

2vðNÞ ⇒

∑
2n−2

k ¼ rþ1
δk−12vðNÞo ðzðrÞ−θnr Þ⇒ ∑

2n−2

k ¼ rþ1
δk−1ðvðNÞ−ð−vðNÞÞÞo ðzðrÞ−θnr Þ:

Now, since the excesses are within ½−vðNÞ; vðNÞ�, it follows that
θnkovðNÞ and zðkÞ4−vðNÞ. Therefore

∑
2n−2

k ¼ rþ1
δk−1ðθnk−zðkÞÞoðzðrÞ−θnr Þ⇒ðzðrÞ−θnr Þ

þ ∑
2n−2

k ¼ rþ1
δk−1ðzðkÞ−θnkÞ40: □

We note that calculating this upper bound may be a difficult
task depending on the structure of the polytope P. In our
computational experiments we have taken δ¼ 0:1 with satisfac-
tory results.
4. Computational aspects

We have proven in Theorem 3.1 that the nucleolus can be
solved by means of the following LP problem:

min ∑
2n−2

k ¼ 1
ðλk−λkþ1Þ ktk þ ∑

2n−2

i ¼ 1
di;k

 !

s:t: di;k≥θi−tk; ∀i; k¼ 1;…;2n−2;
θi ¼ vðSiÞ−∑

j∈Si
xj; ∀i¼ 1;…;2n−2;

∑
n

j ¼ 1
xj ¼ vðNÞ

di;k≥0 ð10Þ
with λk ¼ δk−1; k¼ 1;…;2n−2 and λ2n−1 ¼ 0.

Although our approach proves that the nucleolus is computable
by this single LP problem, this method may be affected by current
implementation of LP solvers due to actual precision in represent-
ing primitives (scalars).

A problem of this formulation is that, due to the small
magnitude of constants δk, they may be considered as zero by
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computers when k is “large”. In order to solve this drawback, we
propose the following iterative process.

Assume the maximum k so that δk can be ensured strictly positive
by computer precision is kmax−1. Therefore, we set λk ¼ 0 ∀k4kmax.
With these new values, the objective function in (10) becomes

∑
kmax

k ¼ 1
ðλk−λkþ1Þ ktk þ ∑

2n−2

i ¼ 1
di;k

 !
: ð11Þ

Note that, after this adaptation, variables tk; dik do not appear in
this objective function for all k4kmax, and therefore the first set of
constraints of problem (10) can be reduced to

di;k≥θi−tk; ∀i¼ 1;…;2n−2; k¼ 1;…; kmax; ð12Þ

which consists of Oðkmax2
nÞ constraints instead of Oð4nÞ. The reader

may observe that the solution to this problem lexicographically
minimizes the kmax largest excesses. If the solution to this problem
gives the nucleolus, we stop. Otherwise, we let Tk ¼ ðkt1k þ∑2n−2

i ¼ 1d
1
i;kÞ

for k¼ 1;…; kmax, where t1 and d1 are the values of variables t and d in
the optimal solution. Tk is the sum of the k-th largest excesses (see [13,
Lemma 1]). If this problem does not yield the nucleolus, in a following
iteration we fix the values of the kmax largest excesses to be equal
to those calculated before, and lexicographically minimize the kmax þ
1;…;2kmax largest excesses.

Therefore the objective function becomes

∑
2kmax

k ¼ kmaxþ1
ðλk−kmax

−λkþ1−kmax
Þ ktk þ ∑

2n−2

i ¼ 1
di;k

 !
: ð13Þ

The first set of constraints reduces to

di;k≥θi−tk; ∀i¼ 1;…;2n−2; k¼ 1;…;2kmax: ð14Þ

And we now add this new set of constraints

ktk þ ∑
2n−2

i ¼ 1
di;k ¼ Tk; k¼ 1;…; kmax; ð15Þ

which aim at fixing the kmax largest excesses. If this procedure
does not give the nucleolus, we store Tk ¼ ðkt2k þ∑2n−2

i ¼ 1d
2
i;kÞ for

k¼ kmax þ 1;…;2kmax, where t2 and d2 are the optimal values of
variables t and d in this second problem.

Therefore, in this iterative process, the m-th iteration solves the
following linear programming problem:

min ∑
mkmax

k ¼ ðm−1Þkmaxþ1
ðλk−ðm−1Þkmax

−λkþ1−ðm−1Þkmax
Þ ktk þ ∑

2n−2

i ¼ 1
di;k

 !

s:t: di;k≥θi−tk; ∀i¼ 1;…;2n−2; k¼ 1;…;mkmax;

θi ¼ vðSiÞ−∑
j∈Si

xj; ∀i¼ 1;…;2n−2;

∑
n

j ¼ 1
xj ¼ vðNÞ;

ktk þ ∑
2n−2

i ¼ 1
di;k

 !
¼ Tk; k¼ 1;…; ðm−1Þkmax;

di;k≥0: ð16Þ

Note that problem (16) lexicographically minimizes the ðm−1Þkmaxþ
1;…;mkmax largest excesses, while the first ðm−1Þkmax are fixed to
the values found in previous iterations. This way we guarantee that
the mkmax largest excesses are lexicographically minimized.

This process should stop when, among the excesses that have
been lexicographically minimized, there is a value that is unique,
see [15, pp. 331 and 332]. The solution to the last LP problem
would give the nucleolus of the game. A pseudocode of this
process is given in Algorithm 1.
Algorithm 1. Iterative process to solve problem (5).

We would like to emphasize that the above iterative approach is
not theoretically necessary since our approach obtains the nucleo-
lus by solving a unique LP problem. Nevertheless we have tested
that in actual computational experiments this algorithm helps to
avoid problems with tolerance of current LP solvers and speeds
our process up.
5. Illustrative example

In this section we show the applicability of our approach by
calculating the nucleolus of a 14-player game. The ordering of the
coalitions Sk; k¼ 1;…;214 ¼ 16 384, is such that k¼ 1þ∑j∈Sk2

j−1,
with S1 ¼∅.

The characteristic function of each coalition Sk is calculated as
vðSkÞ ¼ 0 if ∃ j¼ 1;…;n : 2j−1 þ 1¼ k or k¼1, vðS2n Þ ¼ 1, and vðSkÞ ¼

1
ðnðnþ1Þ=2Þ∑j∈Sk ðj−modðk; jÞÞ otherwise. Function modðk; jÞ yields the
remainder when dividing k by j. Adding this function in the
definition of the characteristic function gives a pseudorandom
aspect to these games, although they can be replicated easily. Note
that vð∅Þ ¼ vðfjgÞ ¼ 0 ∀j and vðNÞ ¼ 1. Note as well that vðSÞ∈ð0;1Þ
for any other coalition S.

5.1. Solution in one step

Our procedure, taking kmax ¼ 20 and δ¼ 0:1, obtained the
following allocation:

x1 ¼ 0:032074; x2 ¼ 0:017313; x3 ¼ 0:038355; x4 ¼ 0:032074;

x5 ¼ 0:054903; x6 ¼ 0:054392; x7 ¼ 0:059653; x8 ¼ 0:076455;

x9 ¼ 0:085445; x10 ¼ 0:091726; x11 ¼ 0:098008; x12 ¼ 0:106997;

x13 ¼ 0:123545; x14 ¼ 0:129061:

The largest excess is −0:009500. We emphasize that the 16-th
excess is the unique excess whose value is −0:010776, meaning
that both the previous and the following excesses are different.
Therefore, there is no other allocation x′ that yields the same
excesses. Because of that we can confirm that the given allocation
is the nucleolus. If we did not have such unique value within the
first 20 excesses, we would have needed to solve the problem
again calculating any other number of excesses strictly greater
than 20 (as detailed in Algorithm 1, where we calculated the first
2�20 excesses). The algorithm would stop when at least one of
the first largest excesses yields a unique value.

The running time was 34 s. This example was solved on a
Packard Bell computer, with Intel(R) Core(TM) i7 2.80 GHz pro-
cessor, 6 GB of RAM memory, running on Windows 7 (64 bits). The
rest of experiments were solved in the same computer.
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5.2. Solution in two steps

It may happen that the allocation obtained is not guaranteed to
be the nucleolus, because none of the kmax largest excesses yields
a unique value. For instance, consider kmax ¼ 10. Our iterative
process would run as follows:
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m¼1. The solution obtained is the same as the one before. The
difference is that now we can only guarantee that the 10 largest
excesses are lexicographically minimum. Note that among the
10 largest excesses (which are the same as before) there is not
a unique value, and therefore we cannot guarantee that the
obtained solution is the nucleolus. This first iteration took 31 s.
In this case, we would proceed to the next iteration, imposing
the values Tk for the 10 largest excesses.
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m¼2. We now solve the problem for this value of m. The new
solution is the same as before. Now, since we can guarantee that
the first 20 excesses are lexicographically minimum, we can
therefore guarantee that the solution obtained is the nucleolus,
and we stop the process. This second iteration took 79 s.

6. Computational results

In this section we show some characteristics observed when
calculating the nucleoli of the family of games defined in Section 5
for number of players n¼ 10;…;18. Table 1 shows the obtained
results for the different values of n. More specifically, the columns
refer to the kmax used, the first sorted excess whose value is
unique, the constant δ used, and the computational time needed to
solve the corresponding problems. The nucleoli for these games
are shown in the appendix. All our codes are written in GAMS
23.0.6 using CPLEX 11.2.1 and are available upon request.

We first note that the constant δ could be fixed to 0.1 in all
cases. We also noted that the first unique value was always among
the 20 largest excesses, except for n¼18, although we can observe
an increase in such value with n. As a matter of fact, fitting these
data to the linear function

kn ¼ 0:9881nþ 2:5357; ð17Þ
where kn denotes the first excess that yields a unique value, has a
linear coefficient of determination R2 ¼ 0:8748, and we therefore
could consider a linear increase in this value with respect to n.
Finally, we note that when fitting the computational time vs. n via
the exponential function

Time¼ 3� 10−6e1:1636n; ð18Þ
the coefficient of determination is R2 ¼ 0:9915. Therefore assum-
ing a (logical) exponential increase in computational time with n
seems reasonable.
le 1
ults. Columns mean: number of players, maximum power of δ, first unique
ss, value of δ, computation time (in seconds), and number of iterations needed
the considered parameters. See the obtained nucleoli for each game in the

endix.

kmax First
unique

δ Time Iter

20 13 0.1 0.62 1
20 13 0.1 1.06 1
20 14 0.1 2.80 1
20 16 0.1 10.44 1
20 16 0.1 34.80 1
20 16 0.1 117.10 1
20 20 0.1 432.93 1
20 19 0.1 1666.70 1
10 20 0.1 6490.00 + 6456.41 + 13054.40 3
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Finally, for n¼18 we considered kmax ¼ 10 in order to reduce
the number of constraints, due to memory problems in the
computer used. Note that in this case we needed three iterations.
7. Conclusions

In this paper we have presented a procedure to calculate
the nucleolus of any benefit game, without restrictions of non-
emptiness in imputation set, core set, etc. The approach consists of
solving a unique linear programming problem. Since the formula-
tion of this problem involves a constant smaller than one powered
to large exponents, one could find some troubles when solving it
because some of these powers might be considered zero by
computers’ precision. In order to avoid this problem, we have
proposed an iterative method that stops when the obtained
solution is guaranteed to be the nucleolus. Such condition is met
when, among the largest excesses that have been lexicographically
minimized, at least one of them is unique.

In order to illustrate our method, we have detailed the
calculation of a 14-player game's nucleolus. The applicability of
our method has been shown by calculating the nucleoli of games
with number of players ranging from 10 to 18. The characteristic
function of such games is deterministic and has been given
implicitly, and therefore these experiments could be replicated
by other researches working on the nucleolus or other allocations
for TU games.
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